ȸ α â

!  å

 󼼺
ΰ


ΰ

<ȣ> | Ϸ

Ⱓ
2024-05-16
ePub
뷮
88 M
PC
Ȳ
1, 0, 0
å α׷ ġ ȵǽó?å α׷  ġ
 Ұ
 Ұ
ټ

 Ұ

ϰ , ϴ ۵θ° ٲٸ
SF ȭ Ƿ ΰ
о߱
30 ˷ִ ΰ

ֱ ΰ ִ ɻ پ ̴. ׷⿡ ΰ ǥ о ڿ ó ǻ ν ΰɿ 庮 㹰 Ѵ. ̵ о߿ ϴ ǥ ˰ ȯŰ(RNN), Ʈ, ռŰ(CNN), Ű(GAN) (Yolo) Ͽ ظ ´.

å ΰ о߱ а ٷ м̴. ΰ 縦 Ұϰ, ΰ п ⺻ н ׿ ظ ƽȸ, Ʈ, Ʈ ӽ پ н Բ ִ dz Ѵ. ΰɿ Ͽ װ о߿ ִ ̴. , ڵ ΰɿ İ ˰ , ȳ Ǿ ֱ⸦ .

ڼҰ

1963 ¾. б ڰа ϰ, ѱ޷Ŀ忡 27Ⱓ ٹߴ. ΰ ŸƮ ͹ٿó ϸ鼭 ΰ Ͽ. ѱ޷Ŀ Ϳ ѱ꼺ο ΰ Ǹ Ͽ. ΰ ̿Ͽ ȯ ϴ ΰ ϰ , ΰ нϿ ߷ ϴ ظ ǻͿ ڵ带 ϰ ִ.

Ӹ

1 ΰ
1. ΰ
1-1. ΰ ź
1-2. ΰ
1-3. ΰ Ʈ
2. ΰ
2-1. ΰ(Artificial Intelligence)
2-2. н(Machine Learning)
2-3. (Deep Learning)
3. ΰ з
3-1.
3-2. Ŀ
4. ΰ ȯ

2 н
1. н
2. н
2-1.
2-2. ó
2-3.
2-4. н ð Ʒ

3 װ ΰ Ű
1. ΰ Ű
1-1. Ű
1-2. ġ
1-3. Ȱȭ Լ
1-4. н ˰
1-5. ս Լ
1-6. Ű
2. ۼƮ
2-1. ۼƮ: AND
2-2. ۼƮ: AND ذ
3. Ű -
4. CNN(Convolutional Neural Network, ռ Ű)
5. RNN(Recurrent Neural Network, ȯ Ű)
6. Ʈ(Transformer)
7. (Yolo)

4 ڿ ó(Natural Language Processing)
1. ڿ ó
1-1. ڿ (NLU, Natural Language Understanding)
1-2. ڿ (NLG, Natural Language Generation)
1-3. ¼ м
1-4. ǥ
1-5. м
1-6.
2. ڿ (Natural Language Understanding)
2-1. ¼ м
2-2. ǥ
2-3. м
3. ڿ (Natural Language Generating)
3-1. ڿ
3-2. ڿ
4. ڿ
4-1.

5 ǻ
1. ǻ
2. ǻ
3. ̹ ó
3-1. ̹ ó
3-2. ̹ ó о
4. ü ν
4-1. ̹ 󺧸
5. ̹
5-1. Ű(GAN, Generative Adversarial Network)
5-2. VAE(Variational Auto Encoder)
5-3. ȯ(Neural Style Transfer)
5-4. (Super Resolution)

6 ǥ н ̺귯
1. Ŷ (Scikit-Learn)
1-1. Ŷ ǥ Ư¡
1-2. Ŷ ġ
2. ɶ(Keras)
2-1. ɶ ǥ Ư¡
2-2. ɶ ġ
3. ټ÷(TensorFlow)
3-1. ټ÷ ǥ Ư¡
3-2. ټ÷ ġ
4. ġ(PyTorch)
4-1. ġ Ư¡
4-2. ġ ġ

ڷ

ټ

  • 10
  • 8
  • 6
  • 4
  • 2

(ѱ 40̳)
侲
Ʈ
 ۼ ۼ õ

ϵ ϴ.