ϰ , ϴ ۵θ° ٲٸSF ȭ Ƿ ΰ о߱30 ˷ִ ΰ ֱ ΰ ִ ɻ پ ̴. ΰ ǥ о ڿ ó ǻ ν ΰɿ 庮 㹰 Ѵ. ̵ о߿ ϴ ǥ ˰ ȯŰ(RNN), Ʈ, ռŰ(CNN), Ű(GAN) (Yolo) Ͽ ظ ´. å ΰ о߱ а ٷ м̴. ΰ 縦 Ұϰ, ΰ п ⺻ н ظ ƽȸ, Ʈ, Ʈ ӽ پ н Բ ִ dz Ѵ. ΰɿ Ͽ װ о߿ ִ ̴. , ڵ ΰɿ İ ˰ , ȳ Ǿ ֱ⸦ .
1963 ¾. б ڰа ϰ, ѱĿ忡 27Ⱓ ٹߴ. ΰ ŸƮ ٿó ϸ鼭 ΰ Ͽ. ѱĿ Ϳ ѱ꼺ο ΰ Ǹ Ͽ. ΰ ̿Ͽ ȯ ϴ ΰ ϰ , ΰ нϿ ߷ ϴ ظ ǻͿ ڵ带 ϰ ִ.
Ӹ1 ΰ 1. ΰ 1-1. ΰ ź1-2. ΰ 1-3. ΰ Ʈ2. ΰ 2-1. ΰ(Artificial Intelligence)2-2. н(Machine Learning)2-3. (Deep Learning)3. ΰ з3-1. 3-2. Ŀ 4. ΰ ȯ2 н1. н 2. н 2-1. 2-2. ó2-3. 2-4. н ð Ʒ3 װ ΰ Ű1. ΰ Ű 1-1. Ű 1-2. ġ 1-3. Ȱȭ Լ1-4. н ˰1-5. ս Լ1-6. Ű 2. ۼƮ2-1. ۼƮ: AND 2-2. ۼƮ: AND ذ 3. Ű - 4. CNN(Convolutional Neural Network, ռ Ű)5. RNN(Recurrent Neural Network, ȯ Ű)6. Ʈ(Transformer)7. (Yolo)4 ڿ ó(Natural Language Processing)1. ڿ ó 1-1. ڿ (NLU, Natural Language Understanding)1-2. ڿ (NLG, Natural Language Generation)1-3. ¼ м1-4. ǥ 1-5. м1-6. 2. ڿ (Natural Language Understanding)2-1. ¼ м2-2. ǥ 2-3. м3. ڿ (Natural Language Generating)3-1. ڿ 3-2. ڿ 4. ڿ 4-1. 5 ǻ 1. ǻ 2. ǻ 3. ̹ ó3-1. ̹ ó 3-2. ̹ ó о4. ü ν4-1. ̹ 5. ̹ 5-1. Ű(GAN, Generative Adversarial Network)5-2. VAE(Variational Auto Encoder)5-3. ȯ(Neural Style Transfer)5-4. (Super Resolution)6 ǥ н ̺귯1. Ŷ (Scikit-Learn)1-1. Ŷ ǥ Ư¡1-2. Ŷ ġ 2. ɶ(Keras)2-1. ɶ ǥ Ư¡2-2. ɶ ġ 3. ټ÷(TensorFlow)3-1. ټ÷ ǥ Ư¡3-2. ټ÷ ġ 4. ġ(PyTorch)4-1. ġ Ư¡4-2. ġ ġ ڷ